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Abstract
Whenever the group Rn acts on an algebra A, there is a method to twist
A to a new algebra Aθ which depends on an antisymmetric matrix θ

(θµν = −θνµ = constant). The Groenewold–Moyal plane Aθ (R
d+1) is

an example of such a twisted algebra. We give a general construction to
realize this twist in terms of A itself and certain ‘charge’ operators Qµ. For
Aθ (R

d+1),Qµ are translation generators. This construction is then applied to
twist the oscillators realizing the Kac–Moody (KM) algebra as well as the KM
currents. They give different deformations of the KM algebra. From one of the
deformations of the KM algebra, we construct, via the Sugawara construction,
the Virasoro algebra. These deformations have an implication for statistics as
well.

PACS numbers: 11.10.Nx, 11.25.Hf

1. Introduction

1.1. Preliminaries

Let (M, g) be a Riemannian manifold with a metric g. Suppose that RN(N � 2) acts as a
group of isometries on M. Then RN acts on the Hilbert space L2(M, dµg) of square-integrable
functions on M. The volume form dµg for the scalar product on L2(M, dµg) is induced from
g. Hence this action of RN is unitary.

We are interested just in the unitarity of the RN action. Hence we can weaken the isometry
condition. That is because the action of RN remains unitary if it leaves only dµg invariant
without necessarily leaving the metric g itself invariant.

1751-8113/07/277789+13$30.00 © 2007 IOP Publishing Ltd Printed in the UK 7789
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Let λ = (λ1, . . . , λN) label the unitary irreducible representations (UIRs) of RN . Then
we can write

L2(M, dµg) =
⊕

λ

H(λ), (1)

where RN acts by the UIR λ, or in the case of multiplicity, by direct sums of the UIR λ, on
H(λ). RN being noncompact, we may have to write the direct sum as the direct integral. But,
as this issue is not important here, we will use the summation notation.

1.2. The twist

There is a general way of twisting the algebra of functions on M using the preceding structure.
We now explain it.

If a = (a1, . . . , aN) ∈ RN and the group law is addition, we choose λ such that
λ : a → eiλ·a . Let fλ and fλ′ be two smooth functions in H(λ) and H(λ′), then under the
pointwise multiplication

fλ ⊗ fλ′ → fλfλ′ ,

where

(fλfλ′)(p) = fλ(p)fλ′(p).

With p a point of M, we have that

fλfλ′ ∈ H(λ+λ′). (2)

Now suppose that θ (θµν = −θνµ = constant) is an antisymmetric constant matrix in the space
of UIRs of RN . We can use it to twist the pointwise product to the *-product ∗θ depending on
θ where

fλ ∗θ fλ′ = fλfλ′ e− i
2 λµθµνλ′

ν . (3)

The resultant algebra Aθ (M) is associative because of (2).
This algebra has been reviewed and developed by Rieffel [1] and many others. Aθ (R

d),
the Moyal plane, is a special case of this algebra. In recent times, Connes and Landi [2]
and Connes and Dubois-Violette [3] have constructed the full noncommutative geometry for
special cases of this algebra.

The above discussion shows that what is pertinent for the twist is not the commutative
nature of the underlying algebra. Rather, it is sufficient to have an associative algebra A graded
by λ = (λ1, . . . , λN) ∈ RN(N � 2):

A =
⊕

A(λ), A(λ)A(λ′) ∈ A(λ+λ′). (4)

Then we can twist it to Aθ :

αλ ∗θ αλ′ = αλαλ′ e− i
2 λµθµνλ′

ν , αλ,λ′ ∈ A(λ),(λ′).

We will illustrate this deformation as well using the bosonic creation–annihilation operators
and the Kac–Moody (KM) algebra4.

It is also possible to twist an associative algebra A to an associative algebra Aθ on which
RN acts even if this action is not unitary. If Vµ, with µ = 1, . . . , N , is a basis of vector fields
for the Lie algebra of RN , and α, β ∈ A, then the twisted product is the *-product

α ∗θ β = α e
←−
V µθµν

−→
V ν β. (5)

4 In the mathematical literature on KM and Virasoro algebras, their twists are understood differently. (We thank
Professor V Dobrev for pointing this out to us.) Hence for these algebras, we replace the phrase ‘twist’ by the phrase
‘deformation’.
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However, if the RN action is not unitary, we may encounter problems in physical applications.
We remark that the grading lattice in (4) can even be periodic. Thus suppose that

A(λ1,λ2,...,λl+Ml,λl+1,...,λN ) = A(λ1,λ2,...,λN ),

where Ml is the period in direction l. Then it is enough for the consistency that the twisting
matrix θ in (3) satisfies

e− i
2 Mlθ

lνλ′
ν = 1 (no l sum)

which implies

θ lνλ′
ν = 4π

Ml

N, N ∈ Z

for each choice of λ′
ν .

1.3. Summary

In section 2, we will apply this construction to a few examples as illustrations. Examples
include group and oscillator algebras. In section 3, we realize the twisted algebra in terms
of the elements of the original algebra and certain ‘charge’ operators Qµ. Such realizations
are known in the theory of quantum groups, for instance in the q-oscillator realization of
Uq(su(2)).

Next in section 4 we construct two different deformed KM algebras. First, we deform
the KM algebra using twisted oscillators. Second, we deform the KM generators directly. We
then check that the KM algebra remains ‘Hopf’ after certain deformations as well, but with
twisted coproducts. At last we obtain the Virasoro algebra, via the Sugawara construction,
using the second form of the deformed KM algebra. The Virasoro algebra we obtain is the
same as the usual one.

The deformation affects the R-matrix and the associated braid group representations. This
means that the statistics is affected by the twisting as was emphasized in earlier papers [4–8].
The ‘Abelian’ twist based on RN dealt with here does not change the permutation group
governing particle identity in the absence of twist. But it does change the specific realization
of this group with serious consequences for physics. We discuss the twisted permutation
symmetry in section 5.

We have acknowledged certain previous papers [1–3] for the origin of the ideas treated in
this paper. It also has overlapped with the Fairlie–Zachos work on ‘atavistic’ algebras [9]. Our
principal concern is the systematic construction of deformed algebras in terms of undeformed
ones, which appears to originate from our own previous work.

The method used for the deformation of algebras presented in this paper has similarities
to a method used in the works of Hu [10, 11]. In particular, the deformed KM algebras we
obtained in the present work are the same as the ‘colour’ KM algebra obtained in [11].

2. Examples of Abelian twists

As mentioned in the introduction, (M, g) is a Riemannian manifold on which RN(N � 2)

acts isometrically. The commutative algebra A(M) is the algebra of functions C∞(M) with
pointwise multiplication. With the scalar product induced by g, we can construct the Hilbert
space L2(M, dµg) which can be decomposed as in (1). A(M) ≡ A0(M) ⊂ L2(M, dµg)

can then be twisted to Aθ (M) using prescription (3). We now give examples of such twisted
algebras.
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2.1. The Moyal plane Aθ (R
d+1)

In this case, Rd+1 acts on A(Rd+1) = C∞(Rd+1) by translations leaving the flat Euclidean
metric invariant. The IRRs are labelled by the momentum λ = (p0, p1, . . . , pd). A basis for
H(p) is formed by plane waves ep with ep(x) = e−ipµxµ

, with x = (x0, x1, . . . , xd) being a
point of Rd+1. Following (3), the *-product is defined by

ep ∗θ eq = epeq e− i
2 pµθµνqν . (6)

This *-product defines the Moyal plane Aθ (R
d+1).

2.2. Functions on tori

This example is a compact version of the Moyal plane. The manifold M is the torus T N(N � 2).
The group RN acts via its homomorphic image U(1) × U(1) × · · · × U(1) ≡ U(1)×N on T N

leaving its flat metric invariant. The IRRs are labelled by the integral lattice ZN with points
λ = (λ1, . . . , λN), λi ∈ Z. A basis for H(λ) is eλ,

eλ(p) = e−iλiθ
i

,

with p = (
eiθ1

, . . . , eiθN )
being a point of T N . The *-product is

eλ ∗θ eλ′ = eλeλ′ e− i
2 λµθµνλ′

ν . (7)

It defines the noncommutative torus T N
θ .

2.3. Functions on groups

Let G = {g} be a simple, compact Lie group of rank N � 2 with an invariant measure dµ

and let T N be its maximal torus. We can denote its IRRs by λ = (λ1, . . . , λN), λi ∈ Z as
before. T N can act on G by left or right multiplication. Let us focus on the right action and
the corresponding action on L2(G, dµ). As this action is unitary, we have decomposition (1).
Now if fλ, fλ′ ∈ H(λ),(λ′) are two smooth functions fλ, fλ′ ∈ C∞(G), and fλ ⊗ fλ′ → fλfλ′

is their pointwise product, we can twist it as

fλ ∗θ fλ′ = fλfλ′ e− i
2 λµθµνλ′

ν . (8)

Now T N acts on the right and left of G. That is, T N × T N acts on G and hence unitarily
on L2(G, dµ). We can use any of its subgroups of rank N � 2 to perform the twist.
With this generalization we can even choose N = 1 and twist A(S3 
 SU(2)), which is
C∞(SU(2)) 
 C∞(S3) with pointwise product.

We will be explicit about this twist. If {DJ
λ1,λ2

|J ∈ {0, 1
2 , 1, . . .}} are the matrix elements

of SU(2) rotation matrices in the basis with the third component of the angular momentum
diagonal, we have the expansion

f =
∑

f J
λ1,λ2

DJ
λ1,λ2

, f ∈ C∞(G), f J
λ1,λ2

∈ C (9)

by the Peter–Weyl theorem [12]. The twisted product is

DJ
λ1,λ2

∗ DK
λ′

1,λ′
2
= DJ

λ1,λ2
DK

λ′
1,λ′

2
e− i

2 λµθµνλ′
ν , λ = (λ1, λ2), λ′ = (λ′

1, λ
′
2). (10)
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2.4. Deforming graded algebras

Let aλ and a
†
λ(λ = (λ1, λ2, . . . , λN),N � 2, λi ∈ R) be the bosonic oscillators (for what

follows, they can equally well be fermionic oscillators),[
aλ, a

†
λ′
] = δλλ′ , [aλ, aλ′ ] = [

a
†
λ, a

†
λ′
] = 0,

where δ is the Dirac delta and δλλ′ = δ(N)(λ − λ′) if λi, λ
′
j take continuous values. If we

assign a charge λ to aλ and −λ to a
†
λ, then aλaλ′ and a

†
λa

†
λ′ have charges λ + λ′ and −λ − λ′

while aλa
†
λ′ and a

†
λ′aλ have charges λ − λ′. Thus aλ, a

†
λ′ generate a graded algebra A with

charge λ giving the grade

A =
⊕

A(λ), A(λ)A(λ′) ⊆ A(λ+λ′). (11)

This feature allows us to twist A to an associative algebra Aθ as before. Thus if αλ ∈ A(λ),
then

αλ ∗θ αλ′ = αλαλ′ e
i
2 λµθµνλ′

ν . (12)

In particular,

aλ ∗θ aλ′ = aλaλ′ e
i
2 λµθµνλ′

ν , a
†
λ ∗θ a

†
λ′ = a

†
λa

†
λ′ e

i
2 λµθµνλ′

ν ,

aλ ∗θ a
†
λ′ = aλa

†
λ′ e− i

2 λµθµνλ′
ν , a

†
λ ∗θ aλ′ = a

†
λaλ′ e− i

2 λµθµνλ′
ν .

Note that Aθ is graded:

Aθ =
⊕

A(λ)
θ .

Following the treatment of A(S3), we can twist even oscillators with just one label λ = λ1.
In this case let λ1 take values 1, 2 as an example so that ai and a

†
i are the Schwinger oscillators

for SU(2). Arrange them as a matrix

ĝ =
(

a1 −a
†
2

a2 a
†
1

)
, (13)

U(1) × U(1) acts on ĝ

ĝ →
(

e
iϕ
2 0

0 e− iϕ
2

)
ĝ

(
e

iϕ
2 0

0 e− iϕ
2

)
.

The U(1) × U(1) charges q = (q1, q2) of ai, a
†
j are

a1 a2 a
†
1 a

†
2

q = (1, 1) (−1, 1) (−1,−1) (1,−1)

So we can label ai, a
†
j by q:

a1 = A(1,1), a2 = A(−1,1), a
†
1 = A

†
(−1,−1), a

†
2 = A

†
(1,−1),

the q-charge of A
†
q being −q.

The oscillators Aq,A
†
q are just like aλ, a

†
λ for N � 2. Hence they can be twisted as

previously.



7794 A P Balachandran et al

3. Aθ in terms of A0 and charges

In this section, we show how to realize Aθ in terms of A and certain charge operators. This
construction was used fruitfully in previous papers [7, 13].

The deformed product was previously given in terms of the undeformed product. It is
also possible to give it as a relation between elements of Aθ if A0 is commutative. Since

aλ ∗θ aλ′ = aλaλ′ e
i
2 λµθµνλ′

ν , aλ′ ∗θ aλ = aλ′aλ e− i
2 λµθµνλ′

ν ,

then for Abelian A0, the relation is that of Weyl:

aλ ∗θ aλ′ = eiλµθµνλ′
ν aλ′ ∗θ aλ.

Let us first discuss this simple case.

3.1. Deformations of Abelian algebras

Let Qµ be the charge operator:

[Qµ, aλ] = −λµaλ. (14)

Set

âλ = aλ e− i
2 λµθµνQν . (15)

Then under θ = 0, unstarred products

âλâλ′ = aλaλ′ e− i
2 (λ+λ′)µθµνQν e

i
2 λµθµνλ′

ν . (16)

Hence

âλâλ′ = eiλµθµνλν âλ′ âλ (17)

so that âλs realize the ∗θ algebra.

3.2. The case A0 is noncommutative

We now argue that Aθ can always be realized as in section 3.1, also when A0 is
noncommutative.

Let A0 = A be a possibly noncommutative graded algebra as above: A0 = ⊕A(λ)
0 . With

each aλ ∈ A(λ)
0 , we associate âλ by the rule

âλ = aλ e− i
2 λµθµνQν . (18)

Then

âλâλ′ = âλaλ′ e
i
2 λµθµνλ′

ν . (19)

Hence the image Â0 of A0 under the hat map is in fact closed under multiplication, that is, is
an algebra. It is also graded:

Â0 =
⊕

λ

Â(λ)
0 (20)

Â(λ)
0 = Image under hat of A0. (21)

It is in fact a subalgebra of Aθ since we also have (17) from (19).
Conversely, if we define aλ by aλ = âλ e

i
2 λµθµνQν , then aλ’s fulfil the relations of A0. The

hat map being invertible, we conclude that Â0 = Aθ and that the inverse map âλ → aλ gives
A0.
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4. Kac–Moody algebras

Now we discuss SU(N) KM algebras. At the first instance, we assume that N � 3, so that the
rank of SU(N) is at least 2. The (complexified) Lie algebra of SU(N) has a basis Hi,E±α ,
where Hi spans the Cartan subalgebra and E±α are the raising and lowering operators:

[Hi,Hj ] = 0, [Hi,Eα] = αiEα, i, j ∈ {1, 2, . . . , N − 1}.
There is an oscillator construction of the KM algebra. We can twist the oscillators

which deform the KM algebra. Or we can directly deform the KM algebra. These sets of
deformations give different deformed KM algebras as we shall see.

4.1. Oscillator twists

Let ai, a
†
j (1 � i, j � N) be the bosonic annihilation and creation operators. Then if

λa(a = 1, 2, . . . , N2 − 1) are the N × N Gell–Mann matrices of SU(N), we have the
Schwinger construction of the SU(N) Lie algebra generators on the Fock space:

	α = a†λαa [	a,	b] = ifabc	c. (22)

We can express Hi,Eα in terms of 	a in a well-known way.
We can also label a

†
j ’s by weights µ(j) such that[

Hi, a
†
µ(j)

] = µ
(j)

i a
†
µ(j) . (23)

Then aj has weight −µ(j). We can write it as aµ(j) , using the negative of the weights as the
subscript for a’s.

For the KM realization, we need infinitely many such oscillator pairs a
(n)†
µ(j) , a

(n)

µ(j) (n =
0, 1, . . .), a

0†
µ(j) , a

0
µ(j) being a

†
µ(j) , aµ(j) . Their weights are ±µ(j)

[
Hi, a

(n)†
µ(j)

] = µ
(j)

i a
(n)†
µ(j) ,

[
Hi, a

(n)

µ(j)

] = −µ
(j)

i a
(n)

µ(j) .

As SU(N) now acts on all the oscillators, the new 	a are

	a =
∑
n�0

a(n)†λaa
(n). (24)

We can next do the twist

a
(n)†
µ(j) , a

(n)

µ(j) −→ â
(n)†
µ(j) , â

(n)

µ(j) ,

where

â
(n)†
µ(j) = a

(n)†
µ(j) e

i
2 µ

(j)

k θklHl , (25)

â
(n)

µ(j) = a
(n)

µ(j) e− i
2 µ

(j)

k θklHl . (26)

Observe that Hl’s form a set of charge operators, i.e., [Hi,Hj ] = 0, for all i, j =
1, . . . , N − 1.

4.2. The Kac–Moody deformations

As mentioned above, there are two ways to deform the KM algebra. The first deformation
is induced by those of the oscillators. In the second, we deform the KM generators directly.
They lead to different deformations of the KM algebra.
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4.2.1. From twisted oscillators. The untwisted bosonic (or fermionic) oscillators give the
KM generators

J (n)
a =

∑
m

a(n+m)†λaa
(m) ≡

∑
m

a
(n+m)†
µ(j) (λa)jka

(m)

µ(k) , (27)

J 0
a ≡ 	a, a(r), a(r)† = 0 if r < 0. (28)

We write the deformed KM generators Ĵ (n)
a in terms of the twisted bosonic oscillators (25)

and (26), so that

Ĵ (n)
a =

∑
m

â
(n+m)†
µ(j) (λa)jkâ

(m)

µ(k) . (29)

(The discussion here remains valid also with the twisted fermionic oscillators.) Substituting
(25) and (26), we find

Ĵ (n)
a =

∑
m

a
(n+m)†
µ(j) (λa)jka

(m)

µ(k) e− i
2 µ

(j)
p θpqµ

(k)
q e

i
2 (µ(j)−µ(k))pθpqHq

=
∑
m

a
(n+m)†
µ(j)

{
(λa)jk e− i

2 ad
←−
H pθpq

−→
H q

}
a

(m)

µ(k) e
i
2 (µ(j)−µ(k))pθpqHq , (30)

where adHp· = [Hp, ·] is the adjoint action of Hp.
The exponential in the braces acts only on oscillators in the manner already shown. The

Gell–Mann matrices are thus effectively changed to the operators

λ̂a = λa e− i
2 ad

←−
H pθpq

−→
H q . (31)

We note that [
λa, e− i

2 ad
←−
H pθpq

−→
H q

] = 0. (32)

Hence

[λ̂a, λ̂b] = iCab
cλ̂c e−iad

←−
H pθpqad

−→
H q . (33)

Thus, we can write

Ĵ (n)
a =

∑
m

a
(n+m)†
µ(j) (λ̂a)jka

(m)

µ(k) e− i
2 ad

←−
H pθpqHq . (34)

Now

Ĵ (n)
a Ĵ

(n′)
b =

∑
m,m′
j,j ′
k,k′

(
a

(n+m)†
µ(j) (λ̂a)jka

(m)

µ(k)

)(
a

(n′+m′)†
µ(j ′) (λ̂b)j ′k′a

(m′)
µ(k′)

)

× e
i
2 (µ(j)−µ(k))pθpq (µ(j ′)−µ(k′))q × e− i

2 ad
←−
H pθpqHq , (35)

where ad
←−
H p is to be applied to all four oscillators, so that

Ĵ (n)
a

(
e

i
2 ad

←−
H pθpqad

−→
H q

)
Ĵ

(n′)
b =

∑
m,m′
j,j ′
k,k′

(
a

(n+m)†
µ(j) (λ̂a)jka

(m)

µ(k)

)(
a

(n′+m′)†
µ(j ′) (λ̂b)j ′k′a

(m′)
µ(k′)

)

× e− i
2 ad

←−
H pθpqHq . (36)
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From this follows the deformed KM algebra

Ĵ (n)
a

(
eiad

←−
H pθpqad

−→
H q

)
Ĵ

(n′)
b − Ĵ

(n′)
b

(
eiad

←−
H pθpqad

−→
H q

)
Ĵ (n)

a

= iCab
cĴ (n+n′)

c + knδabδ
n+n′,0 e−i(µ(j)+µ(j ′))pθpq (µ(k)+µ(k′))q , (37)

where k, being the level of the KM algebra, is 1 for the oscillator construction. Observe that
in this case the commutator defining the KM algebra has been deformed.

4.2.2. From direct deformation of KM generators. We can express the KM algebra in a new
basis where λa are exchanged for Hi,Eα (in the defining representation). This then gives KM
generators SU(N) roots. Roots being special instances of weights, we can also write the basis
as J

(n)
i , J

(n)

µ(s) . Now we dispense with oscillators and consider any level k of the KM algebra.
According to our prescriptions, the deformed siblings of the KM basis elements are

J̃
(n)
i = J

(n)
i

J̃
(n)

µ(s) = J
(n)

µ(s) e
i
2 µ

(s)
p θpqHq .

(38)

If we put Eµ(s) for λa , with µ(s) being a root, then it has nonvanishing matrix elements only
for µ(j) − µ(k) = µ(s). So (38) is almost the same as (30), but not quite. Equation (30) has
the extra phase

e
i
2 µ

(j)
p θpqµ

(k)
q

inside the sum. Substituting µ(j) = µ(k) + µ(s) and using the antisymmetry of θpq , this
simplifies to

e
i
2 µ

(s)
p θpqµ

(k)
q .

So it appears that the two deformations are different.
The algebraic structure of J̃

(n)

µ(s) is simple. Clearly

[
J̃

(n)
i , J̃

(m)
j

] = knδij δ
n+m,0 (39)[

J̃
(n)
i , J̃

(m)

µ(s)

] = µ
(s)
i J̃

(n+m)

µ(s) . (40)

Also [
J̃

(n)

µ(s) e− i
2 µ

(s)
p θpqHq , J̃

(m)

µ(t) e− i
2 µ

(t)

p′ θp′q′
Hq′ ] = [

J
(n)

µ(s) , J
(m)

µ(t)

] = NstJ
(n+m)

µ(s)+µ(t) , (41)

where

Nst 
= 0 ⇐⇒ µ(s) + µ(t) is a root.

Hence, the LHS of (41) is equal to

Nst J̃
(n+m)

µ(s)+µ(t) e− i
2 (µ

(s)+µ(t))p
θpqHq . (42)

4.2.3. Hopf structure of deformations. The existence of a coproduct 
 is an essential property
of a symmetry algebra. With the help of 
, we can compose subsystems transforming by the
symmetry algebra and define the action of the latter on the composite system. An algebra with
a coproduct 
 is known as a coalgebra.

If the symmetry algebra has a more refined structure and is Hopf (and not just a coalgebra),
then it has all the essential features of a group. In this case, we can regard it as a ‘quantum
group of symmetries’ generalizing ‘classical’ symmetry groups [14].
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General deformations of a Hopf algebra such as the KM algebra need not preserve its
Hopf structure. We now show that J̃

(m)

µ(s) is in fact a basis of generators for a Hopf algebra. The

situation as regards Ĵ (n)
a is less clear.

Both J
(m)

µ(s) and Hq are elements of a Hopf algebra. In fact J
(0)

µ(s) and Hq generate

(complexified) su(N) Lie algebra. From the expression for J̃
(m)

µ(s) , we see that J̃
(m)

µ(s) is also
an element of the same Hopf algebra establishing the claim. If 
 is the coproduct, we can
write



(
J̃

(m)

µ(s)

) = 

(
J

(m)

µ(s)

)
e

i
2 µ

(s)
p θpq
(Hq), (43)


 on KM generators having familiar expressions such as


(Hq) = 1 ⊗ Hq + Hq ⊗ 1.

As regards Ĵ (n)
a , we do not have an answer. They do not seem to be elements of the

enveloping algebra of the KM algebra.

4.2.4. Remarks. In both the oscillator and KM deformations, there is a superscript such
as (n) identifying the mode. It is passive in the process of deformation: the antisymmetric
deformation matrix θ = (θµν) is independent of n.

We can make it depend on n. We can replace θ by θ(n) = θ(n)
µν in the preceding construction,

thereby obtaining very general deformations. We will not study this generalization in this
paper.

We can also deform SU(2) KM and its Virasoro algebras by twisting the Schwinger
oscillators of SU(2) following section 2.4. This leads to the deformed SU(2) KM currents
similar to Ĵ

(m)

µ(s) above.

4.3. Virasoro algebra

The Virasoro algebra can be realized from the KM algebra by the Sugawara construction. Its
generators Ln can be written as

Ln = 1

2k + CN

: J (m+n)
a J (−m)

a :, (44)

where k is the level of the KM algebra and CN is the eigenvalue of the Casimir operator of
SU(N).

Here : : denotes normal ordering with regard to the currents Ja . Those with the positive
superscripts stand to the right and we have reverted to the original subscripts a. The deformed
currents on the RHS of (44) will then deform the Virasoro algebra as well.

The central role of the Virasoro algebra in physics is as a symmetry algebra. This suggests
that its deformation from J̃ (n)

a is more interesting. So we focus on the deformation from J̃
(n)

µ(s) .
They deform Ln to

L̃n = 1

2k + CN

∑
m

: J̃ (m+n)
a J̃ (−m)

a : .

Using (38), we can write

L̃n = 1

2k + CN

∑
m

: J
(m+n)

µ(s) J
(−m)

−µ(s) + J
(m+n)
i J

(−m)
i :, (45)

where we used µ(s)
p θpq

( − µ(s)
q

) = 0. Thus, in this approach the Virasoro algebra is not
deformed at all.

For an implementation of the quantum conformal invariance in the 2 − d Moyal plane
see [15].
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5. On statistics

Suppose we have a free quantum scalar field ϕ on the commutative manifold Rd+1 with the
Fourier expansion

ϕ(x) =
∫

dµ(p)[c(p)ep(x) + c†(p)e−p(x)],

p · x = p0x0 − �p · �x, ep(x) = e−ip·x, dµ(p) = 1

(2π)
d
2

ddp

2|p0| , p0 =
√

�p2 + m2,

where x0 and �x are the time and space coordinates, and m is the mass of ϕ. The creation and
annihilation operators fulfil the standard commutation relations

[c(p), c†(p′)] = 2|p0|δd(p′ − p), [c†(p), c†(p′)] = [c(p), c(p′)] = 0.

We can now twist c(p) and c†(p) to

a(p) = c(p) e− i
2 pµθµνPν , a†(p) = c†(p) e

i
2 pµθµνPν , (46)

where p0 and �p are the energy and the momentum, respectively, and Pµ is the translation
operator,

Pµ :=
∫

dµ(p)pµc†(p)c(p) =
∫

dµ(p)pµa†(p)a(p), (47)

[Pµ, a†(p)] = pµa†(p), [Pµ, a(p)] = −pµa(p). (48)

The Pµ operator is the analogue of Qµ. It was studied in [7, 8, 13, 16]. The twist of c’s twists
statistics since a’s and a†’s no longer fulfil standard relations:

a(p)a(p′) = a(p′)a(p) eipµθµνp′
ν , a†(p)a†(p′) = a†(p′)a†(p) eipµθµνp′

ν ,

a(p)a†(p′) = 2|p0|δd(p − p′) + a†(p′)a(p) e−ipµθµνp′
ν .

The implication of this twist is that the n-particle wavefunction ψk1···kn
,

ψk1···kn
(x1, . . . , xn) = 〈0| ϕ(x1)ϕ(x2) · · · ϕ(xn)a

†
kn

a
†
kn−1

· · · a†
k1

|0〉 ,

is not symmetric under the interchange of ki . Rather it fulfils a twisted symmetry:
ψk1···kiki+1···kn

= e−iki,µθµνki+1,ν ψk1···ki+1ki ···kn
. (49)

This twisted statistics by the following chain of connections implies that spacetime is the
Moyal plane with

ep ∗θ ep′ = e− i
2 pµθµνp′

ν ep+p′ . (50)

The chain is as follows: let g be an element of the Lorentz group without time reversal.
For θµν = 0, it acts on ψk1···kn

by the representative g ⊗ g ⊗ · · · ⊗ g (n factors) compatibly
with the symmetry of ψk1···kn

. This action is based on the coproduct


0(g) = g ⊗ g.

But for θµν 
= 0, and for g 
= identity, already for n = 2,


0(g)ψk1,k2 = ψgk1,gk2 = e−ik1,µθµνk2,ν 
0(g)ψk2,k1

= e−ik1,µθµνk2,ν ψgk2,gk1 
= e−i(gk1)µθµν(gk2)ν ψgk2,gk1 .

Thus, the naive coproduct 
0 is incompatible with the statistics (49). It has to be twisted
to


θ(g) = F−1
θ (g ⊗ g)Fθ , Fθ = e

i
2 ∂µ⊗θµν∂ν (51)

for such compatibility.
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But then 
θ is incompatible with the commutative multiplication map m0:

m0(ep ⊗ ep′) = ep+p′ .

That is,

m0[
θ(g)(ep ⊗ ep′)] 
= gep+p′ .

We are forced to change m0 to

mθ = m0Fθ

for this compatibility, that is, to preserve spacetime symmetries as automorphisms. Since

mθ(ep ⊗ ep′) = ep ∗ ep′ ≡ e− i
2 pµθµνp′

ν ep+p′ , (52)

we end up with the Moyal plane.
Thus, statistics can lead to spacetime noncommutativity. This idea is being studied further

by our group.
In general, when we twist the creation and annihilation operators, such as a

†
λ and aλ,

then we twist statistics just as in the Moyal case (50). The spatial slice associated with these
operators can be the N-torus T N if λi ∈ Z, with coordinates (eiθ1 , eiθ2 , . . . , eiθN ). The field
operator at a fixed time is then ϕ where

ϕ(eiθ1 , eiθ2 , . . . , eiθN ) =
∑
{λ1}

[
aλ e−i

∑
i λi θi + a

†
λ ei

∑
i λi θi

]
, (53)

where we have assumed for simplicity that ϕ† = ϕ. Then the torus algebra is twisted for the
same reason as in the Moyal case. If eλ denotes the function with values

eλ(e
iθ1 , eiθ2 , . . . , eiθN ) = e−i

∑
i λi θi ,

then their product ∗ is defined by

eλ ∗ eλ′ = eiλµθµνλ′
ν eλ+λ′ . (54)

That is, we get back the twisted C∞(T N) algebra of (7).
If there is a collection of oscillators indexed by n as in section 4.1, or equally KM

generators with an index n, it is more reasonable to regard them as associated C∞(S1). For
example,

Ja(θ) =
∑

J (n)
a en(e

iθ ), en(e
iθ ) = e−inθ .

This expansion is the known one for the generators of the Lie algebra of the centrally extended
loop group.

In this case, a becomes an internal index. There is perhaps still an interpretation of
the deformation in terms of the statistics of ‘internal’ excitations associated with a. But
C∞(S1) = C∞(T 1) cannot be deformed like C∞(T N) for N � 2. So what these deformations
have to do with spacetime twists is not clear.

6. Final remarks

As remarked earlier, deformations such as those we consider appeared first in the quantum
group theory. Recently, they found concrete applications in discussions of quantum theories
on the Moyal plane and in particular Pauli principle violations and the absence of UV–IR
mixing [7, 8, 13]. Further applications exist. The twists of the Moyal plane are those of the
worldvolume. We can also twist the target of fields with striking results. Work on such twists
is now being written up [17].

As mentioned earlier, recently, Fairlie and Zachos proposed an ‘atavistic’ algebra [9],
which is based on the oscillator algebra. They also called attention to the possible quantum
field theoretical applications of their algebra.
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